21 research outputs found

    Astronomical verification of a stabilized frequency reference transfer system for the Square Kilometre Array

    Full text link
    In order to meet its cutting-edge scientific objectives, the Square Kilometre Array (SKA) telescope requires high-precision frequency references to be distributed to each of its antennas. The frequency references are distributed via fiber-optic links and must be actively stabilized to compensate for phase-noise imposed on the signals by environmental perturbations on the links. SKA engineering requirements demand that any proposed frequency reference distribution system be proved in "astronomical verification" tests. We present results of the astronomical verification of a stabilized frequency reference transfer system proposed for SKA-mid. The dual-receiver architecture of the Australia Telescope Compact Array was exploited to subtract the phase-noise of the sky signal from the data, allowing the phase-noise of observations performed using a standard frequency reference, as well as the stabilized frequency reference transfer system transmitting over 77 km of fiber-optic cable, to be directly compared. Results are presented for the fractional frequency stability and phase-drift of the stabilized frequency reference transfer system for celestial calibrator observations at 5 GHz and 25 GHz. These observations plus additional laboratory results for the transferred signal stability over a 166 km metropolitan fiber-optic link are used to show that the stabilized transfer system under test exceeds all SKA phase-stability requirements under a broad range of observing conditions. Furthermore, we have shown that alternative reference dissemination systems that use multiple synthesizers to supply reference signals to sub-sections of an array may limit the imaging capability of the telescope.Comment: 12 pages, accepted to The Astronomical Journa

    Toxins not neutralized by brown snake antivenom

    No full text
    The Australian snakes of the genus Pseudonaja (dugite, gwardar and common brown) account for the majority of snake bite related deaths in Australia. Without antivenom treatment, the risk of mortality is significant. There is an accumulating body of evidence to suggest that the efficacy of the antivenom is limited. The current study investigates the protein constituents recognized by the antivenom using 2-DE, immuno-blot techniques and rat tracheal organ bath assays. The 2-DE profiles for all three snake venoms were similar, with major species visualized at 78-132 kDa, 32-45 kDa and 6-15 kDa. Proteins characterized by LC-MS/MS revealed a coagulant toxin (∼42 kDa) and coagulant peptide (∼6 kDa), as well as two PLA2 (∼14 kDa). Peptides isolated from ∼78 kDa and 15-32 kDa protein components showed no similarity to known protein sequences. Protein recognition by the antivenom occurred predominantly for the higher molecular weight components with little recognition of 6-32 kDa MW species. The ability of antivenom to neutralize venom activity was also investigated using rat tracheal organ bath assays. The venoms of Pseudonaja affinis affinis and Pseudonaja nuchalis incited a sustained, significant contraction of the trachea. These contractions were attributed to PLA2 enzymatic activity as pre-treatment with the PLA2 inhibitor 4-BPB attenuated the venom-induced contractions. The venom of Pseudonaja textilis incited tracheal contractility through a non-PLA2 enzymatic activity. Neither activity was attenuated by the antivenom treatment. These results represent the first proteomic investigation of the venoms from the snakes of the genus Pseudonaja, revealing a possible limitation of the brown snake antivenom in binding to the low MW protein components

    Validation of a cell-based assay to differentiate between the cytotoxic effects of elapid snake venoms

    No full text
    Introduction: Acanthophis genus (i.e. death adders) and the Naja genus (i.e. cobras) belong to the family elapidae. The current study compared the in vitro cytotoxicity of venoms from four Acanthophis spp. and three Naja spp. on rat aortic smooth muscle cells, A7r5, and rat skeletal muscle cells, L6. The ability of CSL death adder antivenom and SAIMR antivenom, for Acanthophis spp. and Naja spp. venom respectively, to negate the cytotoxicity was also examined. Methods: A cell proliferation assay was used to determine cell viability following treatment with venom in the presence or absence of antivenom. Sigmoidal growth curves were obtained, and IC<sub>50</sub> values were determined. Results: Acanthophis spp. and Naja spp. venoms produced concentration-dependent inhibition of cell proliferation in both cell lines. Naja spp. venoms were significantly more cytotoxic than the most potent Acanthophis venom (i.e. A. antarcticus) in both cell lines. Naja spp. venoms also displayed higher sensitivity in L6 cells. SAIMR antivenom significantly inhibited the cytotoxic actions of all Naja spp. venoms in both A7r5 and L6 cells. However, death adder antivenom (CSL Ltd) was unable to negate the cytotoxic effects of Acanthophis spp. venoms. Discussion: Concentrations of the predominantly cytotoxic Naja spp. venoms used were approximately three times less than the predominantly neurotoxic Acanthophis spp. venoms. SAIMR antivenom was partially effective in neutralising the effects of Naja spp. venoms. Death adder antivenom(CSL Ltd) was not effective in negating the cytotoxic effects of venom from Acanthophis spp. These results indicate that the cell-based assay is suited to the examination of cytotoxic snake venoms and may be used in conjunction with organ bath experiments to pharmacologically characterise snake venoms. Furthermore, the results suggest that the use of a skeletalmuscle cell line is likely to bemore clinically relevant for the examination of cytotoxic snake venoms

    Local morbidity from red-bellied black snake (Pseudechis porphyriacus, Elapidae) envenoming: two cases and a brief review of management

    No full text
    The red-bellied black snake (Pseudechis porphyriacus, Elapidae) is one of several species of venomous snakes most commonly implicated in human and domestic animal envenoming in Australia. Human systemic envenoming can present with myotoxicity that may include myoglobinuria; hemoglobinuria and intravascular hemolysis; thrombocytopenia, anticoagulant coagulopathy, and, rarely, mild cranial nerve palsies. Pseudechis porphyriacus envenoming can also feature significant local morbidity such as ecchymoses, bleeding, pain and necrosis. Some envenomed patients may develop progressive thickness necrosis independent of secondary infection, and occasionally require surgical debridement. Uncommonly, some digital envenoming may cause more severe deeper tissue pathology that justifies dermotomy and/or distal phalangeal amputation. Presented are two patients with significant local morbidity from P. porphyriacus envenoming. An 18-month old girl received a protracted envenoming on her right foot, while a 38-year old male professional zoologist was envenomed on the third digit of his right hand. Each patient experienced myotoxicity, one had anticoagulant coagulopathy, and both developed clinically significant local morbidity including persistent bleeding, ecchymoses, local necrosis and pain; each required extensive treatment and variably prolonged admission. Noted also were transiently elevated D-dimer with low-normal or normal fibrinogen levels. The progressive necrosis and subsequent chronic pathologic changes with ischemia of the latter patient's digit eventually required a dermotomy and amputation of the distal phalanx. The pediatric patient did not require extensive wound debridement, but experienced prolonged difficulty in ambulation because of slowly resolving wound discomfort. Factors that may contribute to the severity of local morbidity of P. porphyriacus envenoming are considered, and management of envenoming by this taxon is briefly reviewed

    Cytoskeletal rearrangements in human red blood cells induced by snake venoms : light microscopy of shapes and NMR studies of membrane function

    No full text
    RBCs (red blood cells) circulating through narrow blood capillaries withstand major deformation. The mechanical and chemical stresses commonly exerted on RBCs continue to attract interest for the study of membrane structure and function. Snake venoms are lethal biochemical ‘cocktails’ that often contain haemotoxins, metalloproteinases, myotoxins, neurotoxins, phosphodiesterases, phospholipases and proteases. We have monitored the effects of 4 snake venoms (Pseudechis guttatus, Oxyuranus scutellatus, Notechis scutatus and Naja kaouthia) on human RBCs using NMR spectroscopy, DIC (differential interference contrast) and confocal light microscopy. RBCs underwent reproducible stomatocytosis, with unusual geographical-like indentations, spherocytosis, followed by rapid lysis. Confocal micrographs using a fluorescent dye linked to phalloidin showed that the change in morphology was associated with the aggregation of actin in the cytoskeleton. ³¹P NMR saturation transfer experiments recorded transport of the univalent anion HPA (hypophosphite) on a subsecond time scale, thereby reporting on the function of capnophorin or Band 3 linked to the cytoskeleton; anion-exchange activity was substantially reduced by venom treatment. We propose a molecular-cytological hypothesis for the shape and functional changes that is different from, or supplementary to, the more ‘traditional’ bilayer-couple hypothesis more often used to account for similar morphological changes invoked by other reagents.11 page(s

    Comparative Studies of the Venom of a New Taipan Species, Oxyuranus temporalis, with Other Members of Its Genus

    No full text
    Taipans are highly venomous Australo-Papuan elapids. A new species of taipan, the Western Desert Taipan (Oxyuranus temporalis), has been discovered with two specimens housed in captivity at the Adelaide Zoo. This study is the first investigation of O. temporalis venom and seeks to characterise and compare the neurotoxicity, lethality and biochemical properties of O. temporalis venom with other taipan venoms. Analysis of O. temporalis venom using size-exclusion and reverse-phase HPLC indicated a markedly simplified “profile” compared to other taipan venoms. SDS-PAGE and agarose gel electrophoresis analysis also indicated a relatively simple composition. Murine LD50 studies showed that O. temporalis venom is less lethal than O. microlepidotus venom. Venoms were tested in vitro, using the chick biventer cervicis nerve-muscle preparation. Based on t90 values, O. temporalis venom is highly neurotoxic abolishing indirect twitches far more rapidly than other taipan venoms. O. temporalis venom also abolished responses to exogenous acetylcholine and carbachol, indicating the presence of postsynaptic neurotoxins. Prior administration of CSL Taipan antivenom (CSL Limited) neutralised the inhibitory effects of all taipan venoms. The results of this study suggest that the venom of the O. temporalis is highly neurotoxic in vitro and may contain procoagulant toxins, making this snake potentially dangerous to humans

    Characterization and structural analysis of a potent anticoagulant phospholipase A2 from Pseudechis australis snake venom

    No full text
    Pseudechis australis is one of the most venomous and lethal snakes in Australia. Numerous phospholipase A (PLA) isoforms constitute a major portion of its venom, some of which have previously been shown to exhibit not only enzymatic, but also haemolytic, neurotoxic and anticoagulant activities. Here, we have purified a potent anticoagulant PLA (identified as PA11) from P. australis venom to investigate its phospholipase, anticoagulant, haemolytic and cytotoxic activities and shown that addition of 11 nM PA11 resulted in a doubling of the clotting time of recalcified whole blood. We have also demonstrated that PA11 has high PLA enzymatic activity (10.9 × 10 Units/mg), but low haemolytic activity (0.6% of red blood cells hydrolysed in the presence of 1 nM PA11). PA11 at a concentration lower than 600 nM is not cytotoxic towards human cultured cells. Chemical modification experiments using p-bromophenacyl bromide have provided evidence that the catalytic histidine of PA11 is critical for the anticoagulant activity of this PLA. PA11 that was subjected to trypsin digestion without previous reduction and alkylation of the disulfide bonds maintained enzymatic and anticoagulant activity, suggesting that proteolysis alone cannot abolish these properties. Consistent with these results, administration of PA11 by gavage in a rabbit stasis thrombosis model increased the clotting time of recalcified citrated whole blood by a factor of four. These data suggest that PA11 has potential to be developed as an anticoagulant in a clinical setting
    corecore